જો ${\left( {2 + \frac{x}{3}} \right)^{55}}$ ના વિસ્તરણમાં $x$ ની ઘાતક અનુક્રમે વધે છે અને બે ક્રમિક પદમાં આવેલ $x$ની ઘાતાંકના સહગુણક સરખા હોય તો તે પદો મેળવો. 

  • [JEE MAIN 2014]
  • A

    $8^{th}$ અને $9^{th}$

  • B

    $7^{th}$ અને $8^{th}$

  • C

    $28^{th}$ અને $29^{th}$

  • D

    $27^{th}$ અને $28^{th}$

Similar Questions

${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં $\frac{1}{x}$ નો સહગુણક મેળવો.

ધારોકે $( a + b )^{12}$ ના દ્વિપદ્દી વિસ્તરણમાં ત્રણ ક્રમિક પદો $T _{ r }, T _{ r +1}$ અને $T _{ r +2}$ નાં સહગુણકો સમગુણોત્તર શ્રેણીમાં છે. ધારોકે $r$ ની તમામ શક્ય કિંમતોની સંખ્યા $p$ છે. ધારોકે $(\sqrt[4]{3}+\sqrt[3]{4})^{12}$ ના દ્વિપદ્દી વિસ્તરણમાં તમામ સંમેય પદોનો સરવાળો $q$ છે. તો $p+q=$ ______________

  • [JEE MAIN 2025]

દ્વિપદી પ્રમેયનો ઉપયોગ કરી $\left(1+\frac{ x }{2}-\frac{2}{ x }\right)^{4}, x \neq 0$ નું વિસ્તરણ કરો. 

${\left( {2 + \frac{x}{3}} \right)^n}$ ના વિસ્તરણમાં ${x^7}$ અને ${x^8}$ ના સહગુણક સમાન હોય તો . . . .

જો $K$ એ $( 1 + x + ax^2) ^{10}$ ના વિસ્તરણમાં $x^4$ નો સહગુણક હોય તો $'a'$ ની કઈ કિમત માટે $K$ ન્યૂનતમ થાય?